Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain.
نویسندگان
چکیده
For most vertebrates, cutting off the oxygen supply to the brain results in a rapid (within minutes) loss of ATP, the failure of ATP-dependent ion-transport process, subsequent anoxic depolarization of neuronal membrane potential and consequential neuronal death. The few species that survive brain anoxia for days or months, such as the freshwater turtle Trachemys scripta, avoid anoxic depolarization and maintain brain ATP levels through a coordinated downregulation of brain energy demand processes. The frog Rana pipiens represents an intermediate in anoxia-tolerance, being able to survive brain anoxia for hours. However, the anoxic frog brain does not defend its energy stores. Instead, anoxia-tolerance appears to be related to a retarded rate of ATP depletion. To investigate the relationship between this slow ATP depletion and the loss of ionic homeostasis, cerebral extracellular K(+) concentrations were monitored and ATP levels measured during anoxia, during the initial phase of anoxic depolarization and during complete anoxic depolarization. Extracellular K(+) levels were maintained at normoxic levels for at least 3 h of anoxia, while ATP content decreased by 35 %. When ATP levels reached 0.33+/-0.06 mmol l(-1) (mean +/- S.E.M., N=5), extracellular K(+) levels slowly started to increase. This value is thought to represent a critical ATP concentration for the maintenance of ion homeostasis. When extracellular [K(+)] reached an inflection value of 4.77+/-0.84 mmol l(-1) (mean +/- S.E.M., N=5), approximately 1 h later, the brain quickly depolarized. Part of the reduction in ATP demand was attributable to an approximately 50 % decrease in the rate of K(+) efflux from the anoxic frog brain, which would also contribute to the retarded rate of increase in extracellular [K(+)] during the initial phase of anoxic depolarization. However, unlike the anoxia-tolerant turtle brain, adenosine did not appear to be involved in the downregulation of K(+) leakage in the frog brain. The increased anoxia-tolerance of the frog brain is thought to be a matter more of slow death than of enhanced protective mechanisms.
منابع مشابه
Glial Hsp70 Protects K+ Homeostasis in the Drosophila Brain during Repetitive Anoxic Depolarization
Neural tissue is particularly vulnerable to metabolic stress and loss of ion homeostasis. Repetitive stress generally leads to more permanent dysfunction but the mechanisms underlying this progression are poorly understood. We investigated the effects of energetic compromise in Drosophila by targeting the Na(+)/K(+)-ATPase. Acute ouabain treatment of intact flies resulted in subsequent repetiti...
متن کاملAdenosine, a "retaliatory" metabolite, promotes anoxia tolerance in turtle brain.
Contrary to what is found in most vertebrates, the brains of certain turtle species maintain ATP levels and ion homeostasis and survive prolonged anoxia. The hypothesis tested here is that the release of adenosine and its binding to A1 receptors are essential for this anoxic tolerance. Studies were conducted in the isolated turtle cerebellum, which did release adenosine to the extracellular spa...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملBiophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane
Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...
متن کاملEvaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice
In order to assess the responses of Hashemi rice genotype and its advanced mutant line under salinity stress of 100 mM Sodium chloride (NaCl) for three and six days the shoot samples were taken for biochemical analysis. This experiment was performed in split plot based on randomized complete block design with three replications. The main factor was factorial combination of saline treatmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 20 شماره
صفحات -
تاریخ انتشار 2001